

Welcome

Sample

to your personalised nutrition and fitness report

Date of birth: 3 February 1966 Date reported: 28 Jul 2023 Sample number: DNA123456ZA

Referring practitioner: Name of practitioner

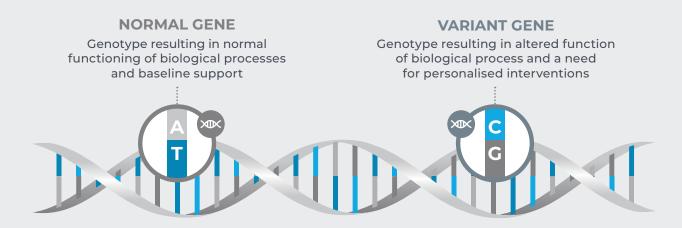
DNA Core is designed to guide you on your journey to live a healthier and more active life, and help you reach your weight management and health goals.

DNA Core Sample DNA123456ZA Page 2 of 62

Contents

The science behind DNA Core	3
An overview of DNA Core	4
How to read your report	4
Summary of core areas Your biological processes summary Your nutrition summary Nutrient requirements Food intolerance and sensitivity Your weight management summary Your exercise response summary	5 5 6 7 8 9
Summary of recommendations	10
Genotype results table	11
Your core priority areas – the detail	14
Biological processes Lipid metabolism	14 14 14 15 16 17 18 18 19 19 20 20 21 22 22 23 23
Nutrition Macronutrient requirements Carbohydrate intake	24 24 24
Total fat and saturated fat intake Mono-unsaturated fat intake Polyunsaturated fat intake	25 26 27
Protein intake	28

	1	Micronutrient requirements	29
		Vitamin A	29
		Vitamin B2	30
		Vitamin B6	3
		Folate	32
		Vitamin B12	3.
		Choline	34
		Vitamin C	3.
		Vitamin D	30
		Calcium	3'
		Iron overload (hemochromatosis)	38
	ı	Food intolerance and sensitivity	39
		Lactose intolerance	39
		Gluten intolerance (coeliac disease risk)	4(
		Alcohol metabolism	4
		Caffeine sensitivity	4
		Salt sensitivity	4.
	W	/eight management	46
	ı	Risk for obesity	4(
	(Circadian rhythms	4'
	ı	Bitter taste	48
	,	Sweet tooth	49
		Snacking and satiety	50
	E	xercise response	5
	ı	Exercise requirements for weight loss	5
	ı	Endurance and power potential	5
	ı	Muscle cramping susceptibility	5.
	ı	Recovery from exercise	54
	ı	Risk for soft tissue injuries	50
,	Α	ppendix	5
	I	-actsheets	5'
		Diet type for weight management	58
		Exercise and MET hours for weight management	59
		Improving sports performance	6


DNA Core Sample DNA123456ZA Page 3 of 62

The science behind DNA Core

Genetics and personalised medicine

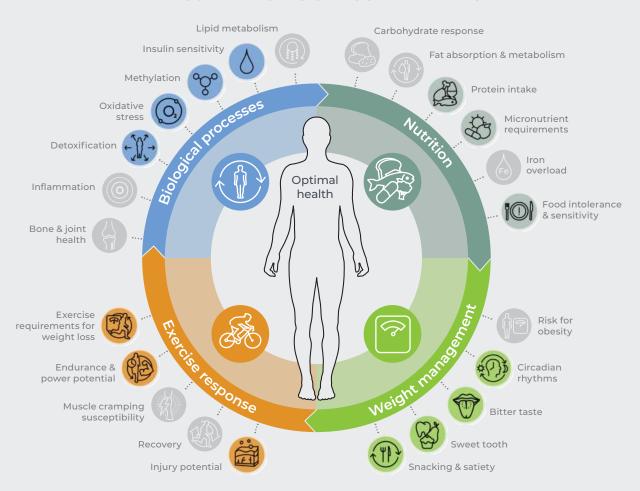
Genes are segments of DNA that contain the instructions your body needs to make each of the many thousands of proteins required for life. Each gene is comprised of thousands of combinations of "letters" (called bases) which make up your genetic code. The code gives the instructions to make the proteins required for proper development and function.

Genetic variations can affect the expression of a gene, thereby affecting metabolic processes that are important for maintaining a state of health. Knowledge of these variations offers a powerful advantage, enabling personalised nutritional, lifestyle, and exercise recommendations aimed at optimising health, weight management and performance.

How does understanding my DNA help me on my journey to achieve my core health goals?

Our cells are complex machines that perform critical, biological processes. These processes, or pathways, have specific requirements to function. Knowledge of the genetic variations you carry can help to determine which diet, lifestyle interventions and nutrients you may need to optimise your health.

The personalised recommendations in this report are grounded in reliable, valid, scientific evidence, that when used in conjunction with a healthy diet, exercise and lifestyle plan, will help you make informed decisions regarding your healthcare journey.



DNA Core Sample DNA123456ZA Page 4 of 62

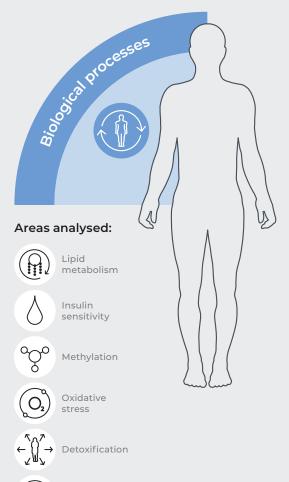
An overview of DNA Core

DNA Core is your handy reference guide to weight management, exercise responsiveness, nutrient requirements, and a host of other factors that combine to help you reach your health goals. Your genes never change, so you can refer to this report at any time.

DNA CORE REPORTS ON FOUR KEY AREAS:

How to read your report

We have analysed your DNA and identified specific genetic variations that make you who you are. These variations are not "good" or "bad" but rather give insights into how you can better support gene expression for optimal cellular functioning. Based on your specific genetic variations, you might need interventions in one or more of the key biological areas to enhance your overall health.


The report is structured and colour-coded based on the core areas shown above. The biological processes that have been identified as priority areas i.e. requiring additional support, are highlighted on the summary pages that follow. This is followed by a summary page of practical recommendations to support your core priority areas. You will then be able to view genotype results in the technical section of the report, followed by detailed information and recommendations for each of your priority areas. In the appendix, you will find fact sheets for your recommended diet type for weight management and exercise recommendation tools.

DNA Core Sample DNA123456ZA Page 5 of 62

Summary of core areas

Your biological processes summary

The biological processes that have been identified as priority areas which require additional support, are highlighted in blue below. The greyed-out results indicate a normal or typical outcome.

Inflammation

Bone and joint health

Your lipid metabolism results:

Typical risk for high triglycerides
Lower triglyceride benefits heart health
(triglycerides = energy stored as fats in the blood)

Typical risk for dyslipidaemia Regular metabolism of "good" & "bad" cholesterol

Typical risk for lipid oxidation
Functioning antioxidant enzyme to protect your blood vessels

Your insulin sensitivity results:

Elevated risk for type 2 diabetes

Poor insulin response to food intake, raising blood glucose levels

Your methylation results:

Elevated risk for raised homocysteine levels

Raised homocysteine levels negatively impacts heart & mental health, mood, ageing & reproduction

Your oxidative stress results:

Suboptimal function of antioxidant enzymes

High risk of oxidative stress, cell damage & premature ageing

Your detoxification results:

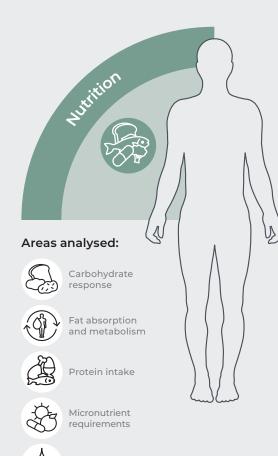
Typical function of phase I detoxification enzymes
Regulated response to environmental pollutants with low risk
of cell damage

Reduced function of phase II detoxification enzymes Poor ability to clear toxins & metabolites from the body with high risk of cell damage

Your inflammation results:

Typical risk for chronic inflammation Negatively impacts heart & mental health, weight management, & recovery

Your bone and joint health results:


Typical risk for low bone mineral densityOptimising bone health reduces risk for osteoporosis & fractures

DNA Core Sample DNA123456ZA Page 6 of 62

Summary of core areas

Your nutrition summary: Nutrient requirements

The areas that have been identified as priority areas which require additional support, are highlighted in green below. The greyed-out results indicate a normal or typical outcome.

Iron overload

Your macronutrient requirements:

Low-to-moderate barrier to weight loss with higher carbohydrate intake. Possible resistance to weight loss with a high carbohydrate intake

Low-to-moderate barrier to weight loss with higher saturated fat intake. Possible resistance to weight loss with a high saturated fat intake

Typical benefit for weight management when eating standard recommendations of mono-unsaturated fats

Typical benefit for weight management when eating standard recommendations of polyunsaturated fats

Enhanced benefit for weight management when eating more good-quality protein foods

Your micronutrient requirements:

Vitamin A: Increased

Susceptible to insufficiency: compromised immunity, poor skin & eye health

Vitamin B2: Increased

Susceptible to insufficiency: fatigue & compromised DNA health

Vitamin B6: Typical

Efficient utilisation of the essential vitamin

Folate: Increased

Susceptible to insufficiency: negatively impacts heart, mental health & DNA health, with fatigue

Vitamin B12: Increased

Susceptible to insufficiency: anaemia, fatigue, poor heart health & cognitive function

Choline: Increased

Susceptible to insufficiency: Negatively impacts normal cell function & pregnancy outcomes. Increases risk for heart & neurological conditions

Vitamin C: Typical

Efficient utilisation of the essential vitamin

Vitamin D: Increased

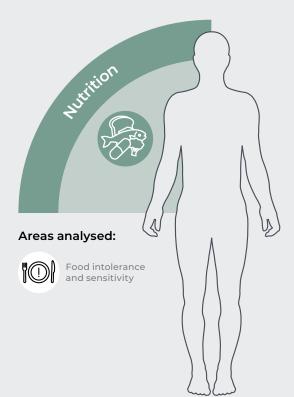
Susceptible to insufficiency: essential in growth & development, immunity, mental health & skeletal health

Calcium: Increased

Susceptible to insufficiency: essential in growth & development & skeletal health

You are at not risk of iron overload

Normal regulation of iron turnover in the body



DNA Core Sample DNA123456ZA Page 7 of 62

Summary of core areas

Your nutrition summary: Food intolerance and sensitivity

The areas that have been identified as priority areas which require additional support, are highlighted in green below. The greyed-out results indicate a normal or typical outcome.

Lactose intolerance:

You are lactose intolerant

You likely cannot break down lactose, & may experience undesired abdominal symptoms

Your risk for coeliac disease (gluten intolerance):

You are at increased risk for coeliac disease

You may experience adverse symptoms with gluten intake

Your alcohol metabolism:

Typical alcohol metabolism

No significant increased risk of liver disease with moderate alcohol consumption

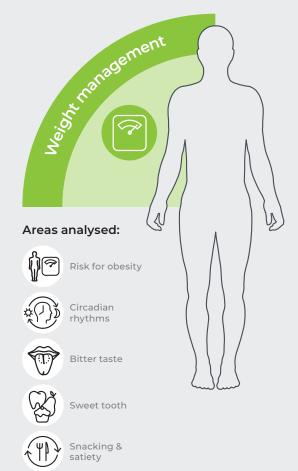
Your food sensitivities:

You are caffeine sensitive

Caffeine may negatively affect your sleep, anxiety, heart & bone health

You are salt sensitive

Eating salt & salty foods will increase blood pressure



DNA Core Sample DNA123456ZA Page 8 of 62

Summary of core areas

Your weight management summary

The areas that have been identified as priority areas which require additional support, are highlighted in green below. The greyed-out results indicate a normal or typical outcome.

Your weight and body composition:

Low-moderate risk for obesity & weight loss resistance You may encounter some barriers to weight loss

.....

Circadian rhythm influence on your weight and exercise performance:

You are more likely to be a morning person

You may prefer waking up early, getting to bed early & require less effort when exercising earlier in the day

Your eating behaviours:

Increased taste sensitivity to bitter foods

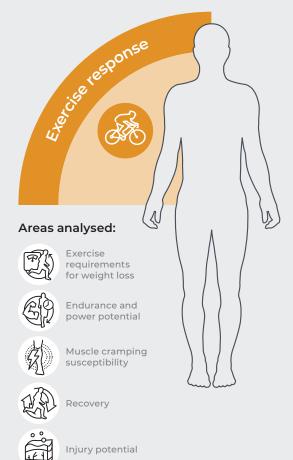
You may have an aversion to vegetables with a bitter taste

Enhanced "sweet tooth"

You are more likely to crave high quantities of sweet foods

Elevated snacking & satiety behaviour

You may feel less satisfied after meals & be more likely to snack often



DNA Core Sample DNA123456ZA Page 9 of 62

Summary of core areas

Your exercise response summary

The areas that have been identified as priority areas which require additional support, are highlighted in green below. The greyed-out results indicate a normal or typical outcome.

Your exercise requirements for weight loss:

You require a LOW-to-MODERATE MET HOURS exercise plan to mobilise fat stores & manage weight in response to exercise

Your endurance and power potential:

Endurance potential

A higher genetic potential for endurance-type training

Your muscle cramping susceptibility:

Typical cramping susceptibility

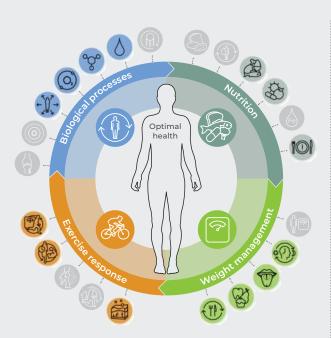
You are not likely to suffer from muscle cramps

Your recovery from exercise:

Typical recovery

You tend to recover quickly from strenuous exercise

Your risk for soft tissue injuries:


Elevated injury risk

Poor ability to rebuild collagen with strenuous activity

DNA123456ZA **DNA** Core Sample Page 10 of 62

Summary of recommendations

- Support insulin sensitivity:

 Nutrients: Good quality fats, fibre, protein

 Focus foods: High-fibre, nutrient-dense wholefoods, limiting carbohydrate-rich foods
- · Maintain a healthy weight, regular meal-timing with portion control
- Exercise regularly & manage stress

Support methylation:

- · Nutrients: Vitamin B complex (with methylfolate), choline,
- · Focus foods: Green leafy vegetables, nuts & seeds,
- · Manage stress & avoid alcohol

Support antioxidant status:

- · Nutrients: Vitamins C & E, selenium, zinc, copper, resveratrol, quercetin
- · Focus foods: Colourful fruits (citrus, apples, berries), nuts, seeds, leafy greens, lean meat
- Exercise at moderate intensity, daily
 Manage stress & limit toxin exposure (pollutants, chemicals etc.)

Support detoxification:

- Nutrients: Sulforaphane, N-Acetylcysteine (NAC), milk thistle
 Focus foods: Cruciferous vegetables (broccoli, cabbage, kale),
- beets, carrots, artichokes, garlic, onions

 Minimise toxin exposure (smoking, alcohol, personal care products), manage stress & support gut health

Your recommended diet:

- · Follow a Mediterranean style diet
- · Increase protein intake (plant-based & lean) to make up 25% of total calorie consumption

Micronutrient requirements:

- · Avoid insufficiency with nutrient-rich foods & supplementation
- **⊘** Folate
- Vitamin C
- Vitamin B6
- **⊘** Choline

Food intolerances and sensitivities:

- · Avoid lactose (milk, cheese)
- · Check for gluten intolerance & eliminate gluten
- · Limit caffeine to 1 cup coffee/day in the morning
- · Avoid salt & salty foods

Circadian rhythm influence:

Challenge your bitter taste sensitivity:

Control your sweet tooth:

Avoid all high-sugar & artificially sweetened foods

Incorporate mindful eating practices:

· Don't skip meals, choose healthy snacks & monitor portion-size

Exercise for weight management:

Follow an exercise program that reaches at least 20 MET hours per week

An endurance-based program will improve performance:

Moderate-long duration, endurance exercise & low intensity strength/resistance training

Manage your risk of soft tissue injuries:

Practice 'prehabilitative' & flexibility training & support collagen health with nutrition

DNA Core Sample DNA123456ZA Page 11 of 62

Genotype results table

 $\bigcirc \ \ \mathsf{No} \ \mathsf{Impact} \qquad \bigcirc \ \mathsf{Beneficial} \ \mathsf{Impact} \qquad \bigcirc \ \mathsf{Low} \ \mathsf{Impact} \qquad \bigcirc \ \mathsf{Moderate} \ \mathsf{Impact} \qquad \bigcirc \ \mathsf{High} \ \mathsf{Impact}$

INGIGUT.	- GENE GENE GENE		GENE IMPACT				
INSIGHT	NAME	VARIATION	RESULT	Biological areas	Nutrition	Weight management	Exercise response
	APOC3	3175 C>G	CG	0			
	APOE	E2/E3/E4	E3/E3	0			
Lipid metabolism	CETP	279 G>A	GG	00			
	LPL	1595 C>G	CG	⊗			
	PONI	A>G	AA	0			
	PPARG	Pro12Ala or C>G	СС	00	0	0	0
	TCF7L2	C>T	CT	•	00	00	
	SLC2A2	Thr1101le	CC	0	0	0	
Sensitivity	FTO	T>A	AT	0	00	00	00
	IDCI	T>C	CC	00			
	IRS1	G>A	AG	0			
	MTHFD1	1958 G>A	GA	00	00		
	MTHFR	677 C>T	CC	0	0		
	MINER	1298 A>C	CC	00	00		
°Ç° Methylation	MTR	2576 A>G	AA	0	0		
	MTRR	66 A>G	AG	0			
	CBS	699 C>T	TC	0			
	COMT	472 G>A	AG	00	00		
Phase I	CYPIAI	lle462Val A>G	AA	0			
detoxification	CYPIAI	T>C	π	0			
Phase I ←Ω① detoxification - caffeine	CYP1A2	A>C	CA		00		
	GSTM1	Insertion/Deletion	Deletion	000			
← Ĥ⁄a Phase II	GSTP1	313 A>G	AG	0			
Phase II detoxification	GSTT1	Insertion/Deletion	Insertion	0	0		
	NQ01	609 C>T	TC	00			
	eNOS	894 G>T	GT	00			00
Antioxidant enzymes	MnSOD/ SOD2	47 T>C (Val16Ala)	TC	00			00
enzymes	GPx	Pro198Leu	CC	0			
	CAT	-262 C>T	CC	9			

DNA Core Sample DNA123456ZA Page 12 of 62

Genotype results table (continued)

INSIGHT	GENE	GENE GENE		IE IMPACT			
INSIGITI	NAME	VARIATION	RESULT	Biological areas	Nutrition	Weight management	Exercise response
	CRP	G>A	AA	0			0
	IL-1A	4845 G>T	GG	0			
	ILIA	-889 C>T	CC	0			
	IL-1B	3954 C>T	CC	0			
(Inflammation	IEID	-511 A>G	GA	•			
	IL-1RN	2018 C>T	СТ	0			
	IL-6	-174 G>C	CG	00			00
	IL-6R	A>C	AA				0
	TNFA	-308 G>A	GG	0	0	0	0
		Fok1 T>C	TC	0			
	VDR	Bsm1 G>A	GA	0			
Vitamin D		Taq1 T>C	TC				0
metabolism & bone health	CYP2R1	A>G	AG		00		
	66	T>G	TT		0		
	GC	1296 G>T	TG		00		
(A) Vitamin A	DCO1	G>T	GG		000		
metabolism	BCO1	Ala379Val (C>T)	TT		00		
Vitamin B12 transport	FUT2	Gly258Ser G>A	GG		000		
Lactose Intolerance	мсм6	-13910 C>T	CC		000		
Gluten intolerance	HLA	DQ2/DQ8	DQ2.2		00		
Alcohol metabolism	ALDH2	rs671 G>A	GG		0		
Iron overload	HFE	C282Y & H63D	282CC & 63HH		0		
	ADIPOQ	-11391 G>A	GG		00	00	
	APOA2	-256 T>C	СТ			0	
Fat absorption & metabolism	APOA5	-1131 T>C	TC			0	
	FABP2	Ala54Thr G>A	GA		00	00	
	PLIN	11482 G>A	GA		00	00	

^{*}The (Power) and/or ((Candurance) impact in the exercise response column refers to a moderate or high gene impact in the Endurance and/or Power Potential section indicating a genetic benefit to you. See page 52 for more information on your Endurance and Power Potential results.

DNA Core Sample DNA123456ZA Page 13 of 62

Genotype results table (continued)

O No Impact ⊗ Beneficial Impact O Low Impact Moderate Impact OOO High Impact GENE VARIATION GENE GENE INSIGHT RESULT NAME Polyunsaturated fatty acid FADS1 GT 00 metabolism UCP1 -3826 A>G AA \bigcirc Energy Energy homeostasis UCP2 -866 G>A AA \odot UCP3 55 C>T CC 0 Arg16Gly AA0 Ē, Epinephrine ADRB2 receptors Gln27Glu CC \bigcirc \bigcirc Đ, - enerav mobilisation 00 00 ADRB3 TC Trp64Arg Dopamine 0 CC \bigcirc DRD2 receptor TAS1R2 lle191Val AA000 000 Taste sensitivity Pro49Ala Medium Ala262Val 00 TAS2R38 Taster Val296Ile Snacking & V1031 0 MC4R TT 0 satiety Circadian 0 CLOCK 3111 T>C TT rhythms AGT T>C TC 00 \bigcirc ACE I>D ID P+E' Blood flow & respiration E) TT BDKRB2 C>T \circ VEGF C>G GG NRF2 AA0 Energy during PPARGC1A G>A GΑ exercise PPARA G>C GG E) Fuel during TRHR C>T CC \bigcirc exercise Musculoskeletal E) ACTN3 R>X XX properties Muscle cramping susceptibility AMPD1 G>A GG COL1A1 1546 G>T GG \bigcirc 000 Collagen 000 GDF5 C>T TT production

CC

C>T

COL5A1

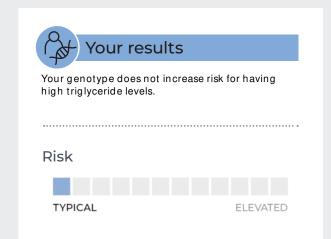
0

^{*}The (Power) and/or (Indurance) impact in the exercise response column refers to a moderate or high gene impact in the Endurance and/or Power Potential section indicating a genetic benefit to you. See page 52 for more information on your Endurance and Power Potential results.

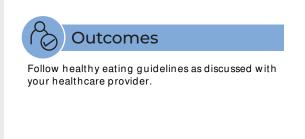
DNA Core Sample DNA123456ZA Page 14 of 62

Your core priority areas - the detail

In this section, all of your genetic priorities per core area are again highlighted for you. This time, further detail is provided to describe the priority area, what it potentially means for you health-wise, and most importantly, what to do to support these areas.


Biological processes

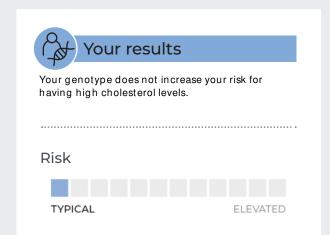
Lipid metabolism

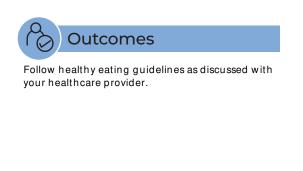


Risk of hypertriglyceridemia

Triglycerides are a type of fat, or lipid, found in your body, and can circulate in your blood. Triglycerides are made from excess calories that you have eaten. The formation of triglycerides is a way of storing energy that your body does not need to use right away. Having high triglyceride levels can lead to hardening and damage of your blood vessels and can increase your risk of heart disease and metabolic syndrome.

GENE VARIATION	GENE RESULT	GENE IMPACT
APOC3 3175 C>G	CG	
APOE E2/E3/E4	E3/E3	0

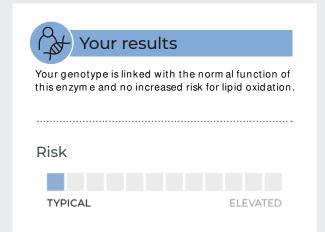



DNA Core Sample DNA123456ZA Page 15 of 62

Risk of Dyslipidaemia and altered LDL:HDL ratio

Dyslipidaemia is considered the imbalance of the different types of fats, or lipids, in the blood. When doing a blood test, if the results show that your levels of HDL, or 'good' cholesterol, to LDL, or 'bad' cholesterol, are not within a healthy balanced range, it means you have dyslipidaemia. This is a risk factor for heart disease. Diet, lifestyle, and other environmental factors all interplay with your genes to determine your risk of having unbalanced blood lipid levels.

GENE VARIATION	GENE RESULT	GENE IMPACT
APOE E2/E3/E4	E3/E3	0
APOC3 3175 C>G	CG	
CETP 279 G>A	GG	00
LPL 1595 C>G	CG	Θ



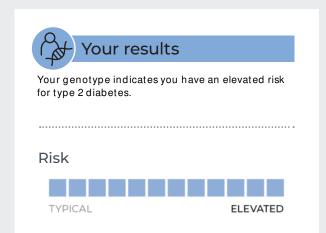
DNA Core Sample DNA123456ZA Page 16 of 62

Lipid oxidation

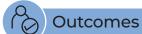
Lipid oxidation is the process whereby the different types of fat found in your blood vessels come under attack by free radicals. Smoking, being overweight, and having a high-stress lifestyle all increase the risk of having high free radicals in the body. The damage caused by free radicals changes the structure and function of the blood lipids, or fats, and leads to damage of blood vessels and arteries in the body. If there is a high level of lipid oxidation and damage constantly taking place, it increases the risk for heart disease.

GENE VARIATION	GENE RESULT	GENE IMPACT
PON1 A>G	AA	0

Follow healthy eating guidelines as discussed with your healthcare provider.


DNA Core Sample DNA123456ZA Page 17 of 62

Insulin sensitivity


Risk for type 2 diabetes

Type 2 diabetes is a chronic illness characterized by consistently higher levels of sugar (glucose) in the blood. This is due to an inability to regulate and use glucose as a fuel for vital body processes because the body does not produce or use insulin effectively. Major driving factors in the development of diabetes include being overweight, having a high waist circumference, being physically inactive, and having a genetic predisposition.

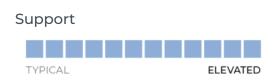
GENE VARIATION	GENE RESULT	GENE IMPACT
PPARG Pro12Ala C>G	CC	00
TCF7L2 C>T	CT	0
SLC2A2 Thr110Ile C>T	CC	0
FTO T>A	AT	0
IRS1T>C	CC	00

IRS1 G>A

It is essential to manage weight through regular physical exercise. Replace saturated fats such as full cream dairy, butter, lard, fat on meat, and chicken skin with monounsaturated fats such as avocado, olive oil, and macadamia nuts. Moderate total carbohydrate intake, avoid all refined carbohydrates and increase fiber-rich foods.

DNA Core Sample DNA123456ZA Page 18 of 62

Methylation


Homocysteine and methionine regulation

Methylation is a simple but key biochemical process that regulates the functioning of several biological systems. Methylation is involved in regulating mood and sleep through production of neurotransmitters, supporting DNA replication for growth and repair, forming the supportive structures that wrap around our nerves, ensuring appropriate nervous system function and cognition, production of immune cells needed for protection against infections, and ensuring healthy cell structure and appropriate communication between cells. The actual process of methylation involves making the special building blocks that can be used in regulating the above-mentioned biological systems. Methylation is also essential to help switch genes on and off, and it plays an important role in protein metabolism and breaking down homocysteine, an amino acid which can become harmful when levels in the body become too high. The methylation process is dependent on "methyl-nutrients" including our B-vitamin family as well as choline and betaine. Poor levels of these nutrients, together with variation in genes involved in methylation, can lead to suboptimal functioning of this process and an increased risk for several disorders.

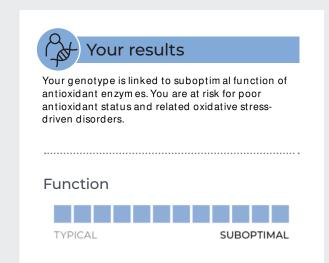
Your results

Your genotype combination leads to suboptim al functioning of these enzymes, which means elevated support is required to better optimise methylation. Poor methylation can be experienced as feelings of low mood, poor heart health, fatigue, and horm onal imbalances. Certain blood tests may also reveal that hom ocysteine levels (a kind of protein your body makes as a by-product of methylation) may be elevated.

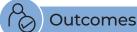
GENE VARIATION	GENE RESULT	GENE IMPACT
MTHFD1 1958 G>A	GA	00
MTHFR 677 C>T	CC	0
MTHFR 1298 A>C	CC	00
MTR 2576 A>G	AA	0
MTRR 66 A>G	AG	
CBS 699 C>T	TC	
COMT 472 G>A	AG	00

Outcomes

Increase your intake of vitam in B and choline-rich foods including dark green leafy vegetables, lentils, whole grains, nuts and seeds, fish and eggs. Consider supplementing with a vitam in B complex that contains L-5-methyltetrahydrofolate and methylcobalam in, but speak to your healthcare provider for advice on a good quality supplement and what is best for you based on a full assessment of your personal needs. Manage stress and avoid alcohol.


DNA Core Sample DNA123456ZA Page 19 of 62

Oxidative Stress

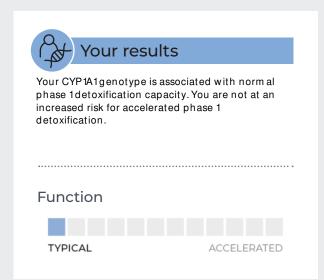


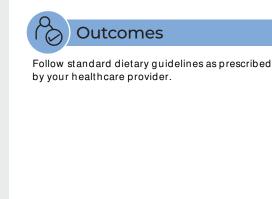
Function of antioxidant enzymes

Antioxidants are compounds that can defend our body from damage and accelerated ageing. They neutralise unstable molecules called free radicals that damage the DNA and cells in our body. Antioxidants are found naturally in the body in the form of enzymes or antioxidant molecules that our bodies can make themselves. They can also be consumed in a wide variety of foods, especially from vegetables and fruit. By far, the main defence system against free radicals and oxidative stress damage, is our own internal antioxidant enzymes. Ensuring optimal production and functioning of our antioxidant enzymes will significantly reduce risk of disease and support overall good health and longevity.

GENE VARIATION	GENE RESULT	GENE IMPACT
eNOS 894 G>T	GT	00
MnSOD/SOD2 47 T>C (Val16Ala)	TC	00
GPX Pro198Leu C>T	CC	0
CAT -262 C>T	CC	⊘

It is important to manage weight, and follow a daily exercise routine that includes low to moderate intensity exercises. It is recommended to stop smoking. Ensure an intake of at least 7 portions of different coloured vegetables and fruit per day. Include selenium rich foods such as Brazil nuts, sardines and turkey and ensure adequate intake of oily fish (3 x per week). Consider antioxidant supplementation as recommended by your practitioner.

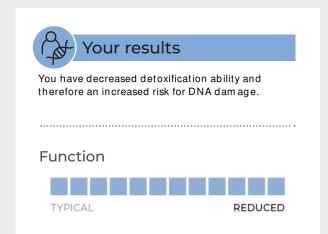

DNA Core Sample DNA123456ZA Page 20 of 62


Detoxification

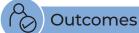
Phase I detoxification function

The detoxification process in the body has two phases. The enzymes involved in phase I detoxification are known as 'activators;' they activate the substance that needs to be removed, allowing the next phase to proceed. Phase I enzymes must exhibit just the right amount of activity for the detoxification process to be effective. Activated compounds in phase I are potentially harmful. If phase I detoxification works too quickly, the overflow of products from phase I detoxification cannot be dealt with effectively, causing damage to cells and increasing risk for disease.

GENE VARIATION	GENE RESULT	GENE IMPACT
CYP1A1 Ile462Val A>G	AA	0
CYPIAIT>C	TT	0



DNA Core Sample DNA123456ZA Page 21 of 62

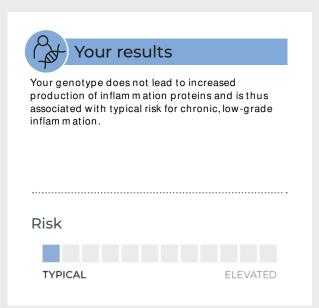


Phase II detoxification function

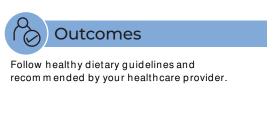
The phase II detoxification enzymes that take over from phase I detoxification enzymes can be considered as 'neutralising' or 'excretory' enzymes because they initiate reactions leading to the excretion of toxins from the body. These enzymes bind the chemical compound glutathione to the 'active' toxins from phase I, making them water soluble so they can be excreted through sweat or urine. Decreased activity or deletion of these genes has been associated with gut health issues, skin sensitivities, and other chronic diseases of lifestyle.

GENE VARIATION	GENE RESULT	GENE IMPACT
GSTM1 Insertion/Deletion	Deletion	000
GSTP1 313 A>G	AG	
GSTT1 Insertion / Deletion	Insertion	0
NQ01 609 C>T	TC	00

To support phase 2 detoxification, increase intake of a variety of fruits and vegetables, preferably organic, with a specific emphasis on daily intake of broccoli, cauliflower, and kale.

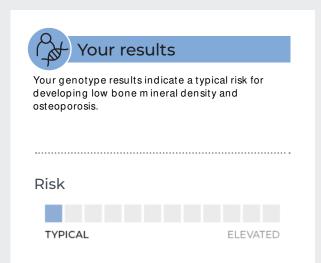

DNA Core Sample DNA123456ZA Page 22 of 62

Inflammation

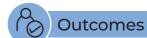

Risk for chronic low-grade inflammation

Inflammation is a normal immune response and an essential step in tissue healing. The release of inflammatory chemicals and proteins is controlled by genes that govern inflammation. However, when these genes are not 'switched off' the inflammatory response continues beyond the point of healing, and can lead to a condition called chronic, low-grade inflammation. An increasing number of common disorders, such as obesity, heart disease, arthritis and inflammatory bowel disease have been associated with chronic low-grade inflammation.

GENE VARIATION	GENE RESULT	GENE IMPACT
CRP G>A	AA	0
IL-1A 4845 G>T	GG	0
IL-1A -889 C>T	CC	0
IL-1B 3954 C>T	CC	0
IL-1B -511 A>G	GA	
IL-1RN 2018 C>T	CT	
IL-6 -174 G>C	CG	00
IL-6R A>C	AA	0
TNFA -308 G>A	GG	0


DNA Core Sample DNA123456ZA Page 23 of 62

Bone and joint health



Bone mineral density and osteoporosis risk

Our bones are not a fixed structure. Our cells work continuously to dissolve old bone and create new bone tissue. After the age of 30, both men and women start losing bone mass; the loss is particularly marked in women after menopause. Accelerated bone mass losses can increase the risk for having a low bone mineral density, eventually leading to osteoporosis. According to latest research both nutrition and genetic factors play an important role in determining bone health.

	OFNIE	OENIE.
GENE VARIATION	GENE RESULT	GENE IMPACT
VDR Fok1 T>C	TC	
VDR Bsm1 G>A	GA	
VDR Taq1 T>C	TC	
COL1A1 1546 G>T	GG	0

It is still important to ensure adequate vitam in D and calcium intake, and include load-bearing exercises to maintain adequate bone mineral density.

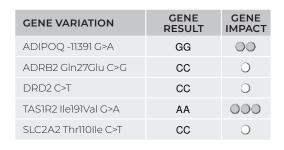
DNA Core DNA123456ZA Page 24 of 62 Sample

Nutrition

Macronutrient requirements

Carbohydrate intake

A high carbohydrate intake has often been associated with an increased risk for obesity and insulin resistance, meaning that a high intake of carbohydrates may hinder your ability to lose weight. Certain gene variants are associated with weight loss resistance when there is a high dietary intake of carbohydrates.



Your results

Your genotype is linked with a slight resistance to weight loss when you have a high intake of carbohydrate in the diet

Sensitivity

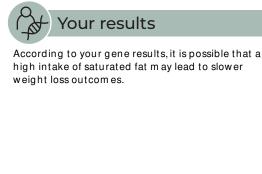
LOW-MODERATE

Outcomes

Moderate your total carbohydrate intake, especially avoiding all refined carbohydrates and processes sugar foods.

Food sources

CARBOHYDRATE SOURCE	Weight	g
White rice	100g	28
Brown rice	100g	23
Corn	100g	19
Breads	100g	49
Potato, baked	100g	21



DNA Core DNA123456ZA Page 25 of 62 Sample

Weight loss and heart health response to total fat and saturated fat intake

Saturated fats are a type of dietary fat which is typically semi-solid at room temperature. Foods high in saturated fat include baked goods, fried foods, animal fats including fatty or processed meats, whole-fat dairy products and fats like coconut oil, palm or palm kernel oils found in packaged foods. Certain gene variations have been associated with increased obesity risk and slower weight loss outcomes when there is a high saturated fat intake. Some gene variations are linked to increased inflammation risk with a high intake of animal fat foods.

Sensitivity

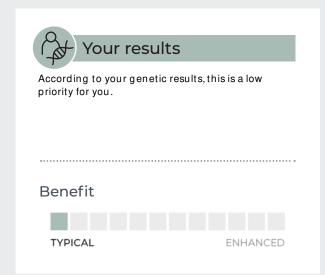
GENE VARIATION	GENE RESULT	GENE IMPACT
FABP2 Ala54Thr G>A	GA	00
ADIPOQ -11391 G>A	GG	00
PPARG Pro12Ala C>G	CC	0
APOA2 -256 T>C	CT	
TCF7L2 C>T	CT	00
FTO T>A	AT	00
APOA5 -1131 T>C	TC	
PLIN 11482 G>A	GA	00
MC4R V103I T>C	TT	0
TNFA -308 G>A	GG	0

Outcomes

Moderate total saturated fat intake by limiting fullfat dairy products (cream, butter, hard cheese) and avoiding fatty meats and deep fried foods.

Food sources

SATURATED FAT CONTENT	Portion	g
Butter	1Tbs	7
Chicken breast with skin	1 medium	2.5
Beef sirloin steak	100g	6
Milk, whole	1 glass	5
Coconut oil	1 Tbs	12



DNA Core Sample DNA123456ZA Page 26 of 62

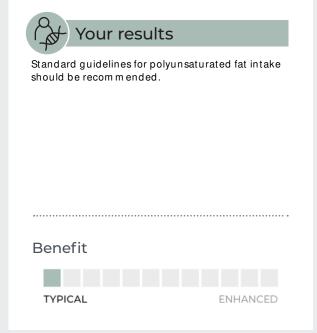
Weight loss response to mono-unsaturated fat intake

Mono-unsaturated fats (MUFA) are a type of unsaturated fat that have significant health benefits; these can be found in olive oil, avocados, and certain nuts. Particular gene variants have been associated with lower body weight when there is a higher intake of mono-unsaturated fats in the diet (approximately >13% of total calories). Benefits are seen if mono-unsaturated fats replace saturated fats or carbohydrates in the diet - i.e., replacing other calories, rather than adding extra calories to your diet. Genetic variants in certain genes have been associated with a lower body weight in individuals when more than 13% of their calories come from mono-unsaturated fats.

GENE VARIATION	GENE RESULT	GENE IMPACT
FABP2 Ala54Thr G>A	GA	00
ADIPOQ -11391 G>A	GG	00
TCF7L2 C>T	CT	00

Standard guidelines for mono-unsaturated fat intake are recommended.

MUFA CONTENT	Portion	9
Olive oil	1Tbs	1.4
Olives	30g	2.31
Avocado pear	1 medium	15
Almonds	30g	11.2
Peanut butter	2 Tbs	8



DNA Core Sample DNA123456ZA Page 27 of 62

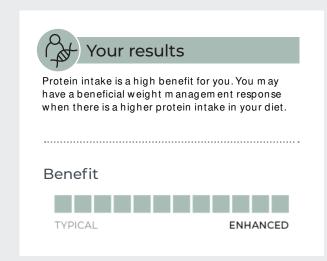
Polyunsaturated fat requirements for health and weight loss response

Genetic variants in certain genes have been associated with a lower body weight in individuals when there is a higher intake of polyunsaturated fats in the diet, with a focus on omega-3 fatty acids. Polyunsaturated fats (PUFA) are essential for brain function and managing inflammation. The best source of omega-3 fatty acids is fatty fish like salmon, sardines, or pilchards. Other sources include pine nuts, walnuts, and flax- and sunflower seeds. Genetic variants in certain genes have been associated with improved weight management outcomes when there is a higher intake of polyunsaturated fats in the diet, with a focus on omega-3 fatty acids, while at the same time limiting the total saturated fat intake.

GENE VARIATION	GENE RESULT	GENE IMPACT
PPARG Pro12Ala C>G	CC	0
FTO T>A	AT	00
TNFA -308 G>A	GG	0
FADS1 G>T	GT	00

Standard guidelines for polyunsaturated fat intake should be recommended.

PUFA CONTENT	Portion	g
Walnuts	14 halves	13
Flaxseed, ground	1Tbs	2
Sunflower seeds	15g	3
Salmon, atlantic raw	100g	3.9
Pilchards, tinned	100g	1.8



DNA Core Sample DNA123456ZA Page 28 of 62

Protein intake

Our body needs dietary protein to supply amino acids for the growth and maintenance of our cells and tissues. There are a total of 20 amino acids, 9 of which are essential, meaning that the body cannot make them, and they need to be consumed through the diet. Different protein sources are considered better quality if they include more of these essential amino acids. Typically, animal proteins provide more of these essential amino acids. This does not mean that you are unable to consume sufficient protein if you do not eat animal products, but instead you may have to eat greater quantities and a greater variety of plant proteins or consider supplementation. Good sources of protein include lean ground beef, chicken breasts, salmon, whole eggs, chickpeas, lentils, soy such as tofu, and red kidney beans.

GENE VARIATION	GENE RESULT	GENE IMPACT
FTO T>A	AT	00

Follow a higher protein diet for weight management. Increase your protein intake to meet approximately 25% of total energy intake. Focus on plant-based and lean sources of protein.

SOURCE OF FOOD	Portion	g
Beef	100g	26
Goat's meat	100g	27
Chicken	100g	27
Fish	100g	27
Whole egg	1	6

DNA Core Sample DNA123456ZA Page 29 of 62

Micronutrient requirements

Vitamin A is a fat-soluble vitamin and essential for human life. Vitamin A has several crucial functions in the body. It helps cells reproduce normally, it is essential for good vision, assists with wound healing and bone formation, and supports the immune system. As humans, we do not make vitamin A and need to obtain it from the diet as provitamin A, such as beta-carotene. Once taken up, it is processed into active vitamin A and/or stored for future processing to perform its functions when needed. The ability to convert provitamin A into active vitamin A is dependent on the enzyme β -carotene 15,15'-oxygenase. This conversion can be altered because of genetic variations in the enzyme-coding gene, BCO1, which can result in an individual having high levels of provitamin A and low levels of active vitamin A.

GENE VARIATION	GENE RESULT	GENE IMPACT
BCO1 G>T	GG	000
BCO1 Ala379Val C>T	TT	00

Increase your intake of yellow, orange, and green leafy fruits and vegetables that are rich in carotenoids (pro-vitamin A). Suggested recommended intake for beta-carotene ranges between 2 - 4.8 mg/day, with higher intake from foods, over supplementation, showing more favourable effects. Also focus on sources of preformed vitamin A from eggs, dairy, liver and fish. Speak to your healthcare provider before taking an active vitamin A supplement.

RECOMMENDED	Male	Female
DIETARY ALLOWANCE	900mcg	700mcg
SOURCE OF FOOD	Portion	mcg
Sweet potato with skin (cooked)	1 medium (151g)	1190
Carrots (raw)	1 cup (120g)	1000
Squash (cooked)	100g	558
Tuna (cooked)	75g	491-568
Eggs	2 large eggs	190-252

DNA Core **Sample DNA123456ZA** Page 30 of 62

Vitamin B2

Vitamin B2, also known as riboflavin, is a water-soluble vitamin that is found in a variety of foods including salmon, milk, and spinach. Vitamin B2 plays an important role in the production of energy, protecting DNA from getting damaged, and it is needed to help the body change vitamin B6 and folate into more usable forms. It is also important for growth and red blood cell production. Our body is unable to make this essential nutrient itself, so we must get adequate amounts of vitamin B2 through dietary intake.

Your results

Your genotype combination means that these enzymes are not working as well as they should and your requirements for vitamin B2 may be increased. This may lead to an insufficiency of vitamin B2, which can be experienced as dry skin, mouth ulcers, cracked lips and feelings of low energy.

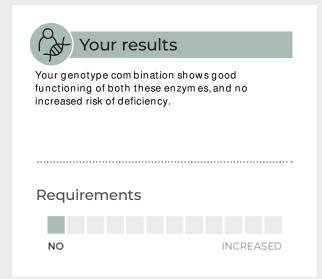
Requirements

GENE VARIATION	GENE RESULT	GENE IMPACT
MTHFR 677 C>T	CC	0
MTHFR 1298 A>C	CC	00
MTRR 66 A>G	AG	0

Outcomes

Increase your intake of vitam in B2-rich food sources such as low-fat milk, lean beef and spinach, to reach a requirement of 1.1 to 13mg per day. A vitam in B-complex supplement could be considered, but first speak to your healthcare provider for advice on a good quality supplement and check if vitam in B2 supplementation is necessary based on your personal needs.

RECOMMENDED	Male	Female
DIETARY ALLOWANCE	1.3mg	1.1mg
SOURCE OF FOOD	Portion	mg
Beef steak	100g	0.9
Low fat milk	475ml	0.9
Salmon	100g	0.5
Tofu	100g	0.4
Spinach (cooked)	250ml	0.4



DNA Core Sample DNA123456ZA Page 31 of 62

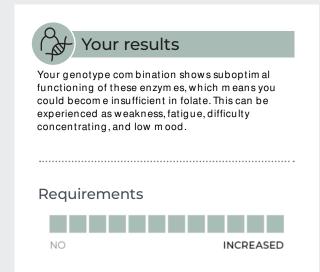
Vitamin B6

Vitamin B6 is a water-soluble vitamin that is naturally present in many foods. The richest sources of vitamin B6 include fish, beef liver and other organ meats, potatoes and other starchy vegetables, and fruit. This vitamin performs many functions in the body. One of its main roles is to help the body metabolise proteins, fats, and carbohydrates for energy. Vitamin B6 is also involved in brain development, immune function and in maintaining normal levels of homocysteine, an amino acid which can become harmful when levels become too high in the body. Insufficient vitamin B6 intake can increase the risk of cardiovascular disease and cognitive decline.

GENE VARIATION	GENE RESULT	GENE IMPACT
MTHFR 677 C>T	CC	0
CBS 699 C>T	TC	

Follow standard dietary guidelines to ensure adequate intake of vitam in B6-rich foods.

RECOMMENDED	Male	Female
DIETARY ALLOWANCE	1.3-1.7mg	1.3-1.5mg
SOURCE OF FOOD	Portion	mg
Salmon	100g	0.9
Lean chicken breast	100g	0.9
Tuna	1 can	0.8
Tofu	100g	0.5
Banana	100g	0.5
Avocado	1 (150g)	0.4



DNA Core Sample DNA123456ZA Page 32 of 62

Folate

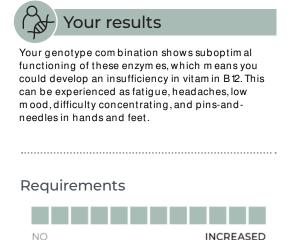
Folate, also known as vitamin B9 or folic acid in its synthetic form, is a water-soluble vitamin that is found in green leafy vegetables. Folate plays an important role in helping to make and repair DNA and for proper cell growth. It is also essential for red blood cell formation and function. It is crucial for pregnant women to get sufficient folate to support foetal growth. Folate also supports good heart health, and mental health, decreasing risk for depression and dementia, and it may reduce the risk of various cancers. Our body is unable to make this essential nutrient itself, so we must get adequate amounts of folate through dietary intake or, when indicated, through supplementation.

GENE VARIATION	GENE RESULT	GENE IMPACT
MTHFR 677 C>T	CC	0
MTHFR 1298 A>C	CC	00
MTR 2576 A>G	AA	0
MTRR 66 A>G	AG	0
MTHFD1 1958 G>A	GA	00

Outcomes

Increase your intake of folate-rich food sources such as edam ame and bayam, to reach a requirement of 400 mcg per day. Note that if you are pregnant, or planning to fall pregnant, this is a very important nutrient for you and your growing baby, and your requirements will be increased. A vitam in B-complex supplement could be considered, but first speak to your healthcare provider for advice on a good quality supplement and whether folate supplementation is necessary based on a full assessment of your personal needs.

THE STATE OF THE S		
DIETARY ALLOWANCE	400mcg	400mcg
SOURCE OF FOOD	Portion	mcg
Beef liver	100g	258
Beans	100g	147
Edamame beans (cooked)	125ml	106-255
Spinach (raw)	100g	116
Broccoli	125ml	89
Lettuce	250ml	65-80


Female

DNA Core Sample DNA123456ZA Page 33 of 62

Vitamin B12

Vitamin B12 or cobalamin is an essential nutrient that is naturally found in foods of animal origin, including fish, meat, eggs, and dairy products. It is usually bound to the protein in food and must be released before it can be absorbed by the body. Vitamin B12 plays a critical role in development, functioning of the central nervous system, healthy red blood cell formation, and DNA synthesis. Variations in the genes involved in the absorption, transport, cellular uptake, and metabolism of vitamin B12 can lead to altered vitamin B12 status. A deficiency of vitamin B12 has been linked to health complications including an increased risk of neuropsychiatric symptoms, cardiovascular diseases, and the onset of different forms of cancer.

GENE VARIATION	GENE RESULT	GENE IMPACT
FUT2 Gly258Ser G>A	GG	000
MTRR 66 A>G	AG	

Outcomes

Increase your intake of vitam in B 12-rich food sources such as tuna and eggs, to reach a requirement of 4 m cg per day. Note that if you are vegan, elderly, pregnant, or planning to fall pregnant, it may be more difficult to reach your requirements of vitam in B 12. A vitam in B-complex supplement could be considered, but first speak to your healthcare provider for advice on a good quality supplement and whether vitam in B 12 supplementation is necessary based on a full assessment of your personal needs. Consider a probiotic to manage gut health.

RECOMMENDED	Male	Female
DIETARY ALLOWANCE	2.4mcg	2.4mcg
SOURCE OF FOOD	Portion	mcg
Tuna (cooked)	75g	8.2-9.3
Salmon (cooked)	75g	2.1-4.4
Minced beef (cooked)	75g	2.4-2.7
Egg	2 large eggs	1.1-1.6
Milk (whole)	1 cup (250ml)	1.2-1.4

DNA Core Sample DNA123456ZA Page 34 of 62

Choline

Choline is a nutrient that is found in many foods such as meat, eggs, poultry, fish, and dairy products. It has a vital role to play in regulating memory, mood, and muscle control. Choline is also an important component of your cell's outer membranes, ensuring the structural integrity and signaling functions of the cell. A small amount of choline is produced in the liver, but this is not sufficient to meet our body's needs. Sufficient choline must be obtained from the diet. Inadequate choline levels could increase the risk of cardiovascular disease and neurological conditions.

Your results

Your genotype shows suboptimal functioning of this enzyme, which means you could develop insufficiencies in choline. This can be experienced as weakness, and difficulty concentrating, and is related to risk of poor heart health, and decreased functioning of liver and muscles.

Requirements

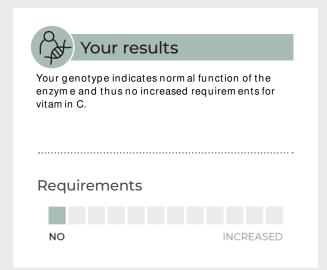
GENE VARIATION	GENE RESULT	GENE IMPACT
MTHFD1 1958 G>A	GA	00

Outcomes

Increase your intake of choline-rich food sources such as egg and soybeans reach a requirement of 425 to 550 mg per day. Note that if you are vegan, elderly, pregnant, or planning to fall pregnant, it may be more difficult to reach your requirements of choline. A choline supplement could be considered, but first speak to your healthcare provider for advice on a good quality supplement and what is best for you based on a full assessment of your personal needs.

Food sources

ADEQUATE INTAKE	Male	Female
ADEQUATETIMAKE	550mg	425mg
SOURCE OF FOOD	Portion	mg
Egg	1 egg	147
Soybeans (cooked)	1 cup (185g)	82
Chicken breast	85g	72
Salmon	85g	67
Milk (whole)	1 cup (250ml)	43



DNA Core Sample DNA123456ZA Page 35 of 62

Vitamin C

Vitamin C is an essential vitamin naturally present in some foods, such as fresh fruits and vegetables, especially citrus fruits. The human body is unable to make vitamin C itself, so it is an essential nutrient we must take in from our diet. Vitamin C is needed for the growth and repair of tissues, repair and maintenance of cartilage, bones, and teeth and facilitates the absorption of iron. It plays a key role in immune function and limits the damaging effects of free radicals through its antioxidant activity. A deficiency of vitamin C can result in oxidative stress-related conditions such as cardiovascular disease, neurodegenerative diseases, and cancer.

GENE VARIATION	GENE RESULT	GENE IMPACT
GSTT1 Insertion/Deletion	Insertion	0

Follow standard dietary guidelines to ensure adequate intake of vitam in C-rich foods.

RECOMMENDED DIETARY ALLOWANCE	Male	Female
	90mg	75mg
SOURCE OF FOOD	Portion	mg
Guava	165g	377
Bell pepper	1 cup chopped (149g)	120
Papaya	140g	87
Orange	1 fruit (154g)	87
Kiwi	1 fruit (75g)	56

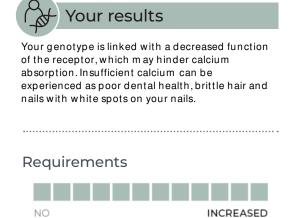
DNA Core Sample DNA123456ZA Page 36 of 62

Vitamin D, referred to as calciferol, is a fat-soluble vitamin that is naturally present in a few foods, but also produced in our bodies when ultraviolet (UV) rays from sunlight strike the skin and trigger vitamin D synthesis. Vitamin D is essential for supporting good bone, teeth, and muscle health. It also plays important roles in foetal programming and nerve development, facilitates insulin secretion to control blood sugar levels, and supports immune function.

GENE VARIATION	GENE RESULT	GENE IMPACT
CYP2R1 A>G	AG	00
GCT>G	TG	0
GC 1296 G>T	TG	00

Increase your intake of vitam in D-rich food sources such as salm on and canned tuna to meet a minim um requirement of 600 IU per day. Being outdoors in the sun for half an hour will also assist in improving vitam in D levels. Vitam in D supplementation could also be considered, but first speak to your healthcare provider for advice on a good quality supplement and what is best for you based on a full assessment of your personal needs.

RECOMMENDED DIETARY ALLOWANCE	Male	Female
	600 IU	600 IU
SOURCE OF FOOD	Portion	IU
Mushrooms (Maitake) (raw)	1 cup diced (70g)	784 IU
Trout	1 fillet (79g)	502IU
Salmon	100g	450 IU
Tuna	1 can	270 IU
Egg yolk	1 (egg)	40 IU



DNA Core Sample DNA123456ZA Page 37 of 62

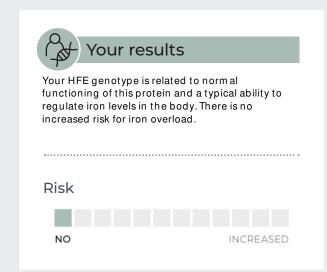
Calcium

Calcium is a major constituent of our bones, providing strength and structure. Our bones are the main storage site of calcium and the regulation of calcium release is important for maintaining healthy cellular levels of calcium in our bodies. Ensuring adequate intake of calcium in the diet from a young age will help to build strong bones and decrease risk of developing low bone mineral density later in life. How our bodies absorb calcium is, to some extent, genetically determined.

GENE VARIATION	GENE RESULT	GENE IMPACT
VDR Fok1 T>C	TC	
VDR Bsm1 G>A	GA	
VDR Taq1 T>C	TC	

Increase intake of calcium-rich foods to support bone health and meet requirements of 1200mg per day. Good food sources include cow's milk and yogurt, tofu and canned salmon.

RECOMMENDED	Male	Female
DIETARY ALLOWANCE	1000-1200 mg	1000-1200 mg
SOURCE OF CALCIUM	Portion	mg
Cow's milk	1 glass	275–350
Yoghurt	250g	260
Tofu	100g	350
Spinach	1 cup	250
Canned salmon	1 can	350



DNA Core Sample DNA123456ZA Page 38 of 62

Iron overload (hemochromatosis)

Hereditary hemochromatosis is a genetic disorder in which there is excessive accumulation of iron in the body, leading to iron overload. In individuals with the disorder, the daily absorption of iron from the intestines is greater than the amount needed to replace losses. Since the normal body cannot increase iron excretion, the absorbed iron builds up in the body. This extra iron can cause damage to organs such as the heart, liver, and pancreas. While some individuals, with the genes for hemochromatosis, do not show signs and symptoms of the disease, others may show severe symptoms such as joint pain, erectile dysfunction, heart failure, fatigue, and darkening of skin colour. Although it can cause serious problems, it is a very treatable condition, especially when identified early.

GENE VARIATION	GENE RESULT	GENE IMPACT
HFE C282Y & H63D	282CC & 63HH	0

Follow standard dietary guidelines for iron-rich foods in conjunction with recommendations by your healthcare practitioner.

RECOMMENDED	Male	Female
DIETARY ALLOWANCE	8-11mg	8-18mg
SOURCE OF FOOD	Weight	mg
Lentils	100g (canned)	3.1
Beef, roast	100g	2.89
Clam (shellfish)	100g	1.95
Spinach (raw)	100g	1.26
Broccoli	100g	0.69

DNA Core Sample DNA123456ZA Page 39 of 62

Food intolerance and sensitivity

Lactose intolerance

Many adults are genetically predisposed to not be able to digest larger quantities of milk or milk products. This is known as lactose intolerance. Lactose, a sugar found in milk, is broken down by an enzyme called lactase, found in the small intestines. This enzyme is produced by the LCT or lactase gene. For many people, the production of this enzyme stops before adulthood, however this is dependent on your genes. Individuals who suffer from this condition may experience abdominal cramps, bloating, nausea, flatulence, and diarrhoea.

Your results

Your genotype is associated with a decreased ability to make the enzyme that breaks down lactose and you may be lactose intolerant. Opt for yogurt and other fermented dairy products over fresh milk. Lactose-free milk and other dairy alternatives may be used. Consider using a probiotic to support gut health.

Tolerance

GENE VARIATION	GENE RESULT	GENE IMPACT
MCM6 -13910 C>T	CC	000

Outcomes

Decrease total dairy intake to no more that one cup spread out through the day. Opt for yogurt and other fermented dairy products. Lactose free milk and other dairy alternatives may be used. Consider using a probiotic.

Food sources

Some lactose intolerant individuals can tolerate up to 12 g of lactose per day, which is equivalent to 1 cup of milk

SOURCE OF FOOD	Portion	g
Cow's milk	1 cup	12
Goat's milk	1 cup	11
Flavoured milk	1 cup	10
Yoghurt	³ / ₄ cup	7
Ice cream	½ cup	5

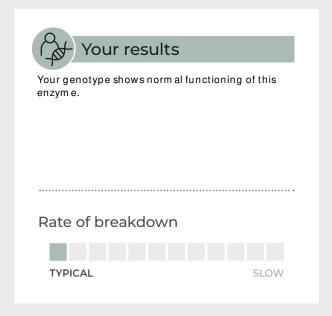
DNA Core Sample DNA123456ZA Page 40 of 62

Gluten intolerance (coeliac disease risk)

Coeliac disease (CD) is a common, autoimmune disorder in which the small intestine is damaged in response to a severe gluten intolerance. Gluten is the protein found in grains such as wheat, barley, and rye. Classical symptoms of coeliac disease include diarrhoea, bloating, and wind, which is triggered by gluten ingestion. Other less typical signs of gluten intolerance include fatigue, anaemia, and osteoporosis.

GENE VARIATION	GENE RESULT	GENE IMPACT
HLA DQ2/DQ8	DQ2.2	00

If you find that you suffer from related symptoms, consider a gluten free diet. Gluten free grains include quinoa and buckwheat. Avoid glutencontaining foods and grains such as wheat, rye, oats and barley. Consult with a dietitian for guidelines on following a gluten free diet.



DNA Core Sample DNA123456ZA Page 41 of 62

Alcohol metabolism

Alcohol metabolism is a complex process with large differences in absorption, distribution, and elimination between different people. Alcohol is first broken down into acetaldehyde, which is highly toxic and is known to cause cancer. Acetaldehyde is then further broken down into a less harmful compound called acetate, by the aldehyde dehydrogenase 2 (ALDH2) enzyme. From there it can be broken down into water and carbon dioxide for easy elimination. The damaging effects of alcohol are directly related to the blood-alcohol levels achieved after alcohol intake, as well as the ability to break down and remove the highly toxic product of alcohol metabolism, acetaldehyde. This depends on the genetic variations found in the gene encoding ALDH2, as well as environmental factors, such as the amount of alcohol you consume.

GENE VARIATION	GENE RESULT	GENE IMPACT
ALDH2 G>A	GG	0

Follow standard dietary guidelines in conjunction with recommendations by your healthcare practitioner. If you drink alcohol, drink in moderation.

PERCENTAGE OF ALCOHOL	
Cider	5%
Beer	2-8%
Wine	10-20%
Sake / soju	20-40%
Vodka and tequila	40%
Brandy and gin	35-55%

DNA Core Sample DNA123456ZA Page 42 of 62

Caffeine sensitivity

Caffeine is the most widely used stimulant and is found in relatively high amounts in coffee and energy drinks. Coffee and caffeine affect different people in different ways. There is strong evidence to support personalised guidelines when it comes to caffeine intake and recommendations. For some people, a high caffeine intake is linked to increased risk for heart disease and spikes in blood pressure, whereas improved exercise performance is experienced by other individuals. Others may experience poor sleep and anxiety related to a higher caffeine intake. Responsiveness to caffeine is thus largely genetically dependant.

Your overall results

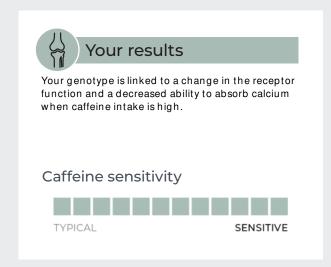
Your genotype indicates you may experience adverse effects to a high caffeine intake. Due to the variants that you carry, a high caffeine intake may increase risk for heart disease, spike blood pressure, increase feelings of anxiety, and predispose to a lower bone mineral density.

Caffeine sensitivity

Outcomes

Limit caffeine consumption to a maximum of 200mg per day. This equates to no more than 2 cups of coffee per day.

Food sources


SOURCE OF FOOD	Portion	mg
Brewed coffee	1 cup /240ml	95
Instant coffee	1 cup /240ml	60
Black tea	1 cup /240ml	45
Soda (cola)	350ml can	40
Chocolate (dark)	30g	24

DNA Core Sample DNA123456ZA Page 43 of 62

Caffeine sensitivity: Bone health

Caffeine consumption can impact your bone health. A high caffeine intake has been reported to interact with calcium absorption and decrease bone mineral density, increasing risk of fractures.

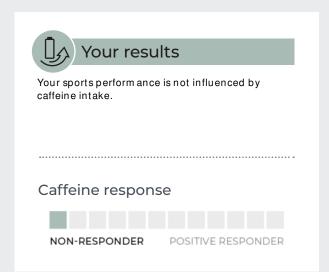
Lim it all caffeine to less than $300\,m\,g$ per day, which is equivalent to drinking $2\,to\,3$ cups of filter coffee.

GENE VARIATION	GENE RESULT	GENE IMPACT
VDR Fok1 T>C	TC	0
VDR Bsm1 G>A	GA	
VDR Taq1 C>T	TC	

Caffeine sensitivity: Anxiety and sleep

Caffeine can increase your heart rate, blood pressure and stress hormone levels, which is similar to what happens when under high stress conditions. Some individuals tend to break down these stress hormones at a slower rate, and a high caffeine intake can hinder this break-down process even further. Your genotype will influence whether you are someone who feels more anxious and struggles to sleep after excess caffeine consumption or drinking coffee too late in the day.

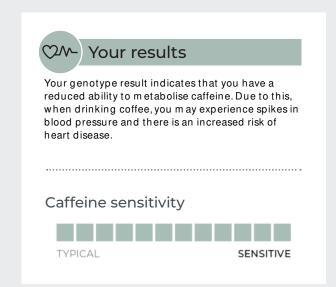
Limit caffeinated coffee intake to not more than one cup in the morning, otherwise opt for decaffeinated options. Avoid all other caffeinated beverages.


GENE VARIATION	GENE RESULT	GENE IMPACT
COMT 472 G>A	AG	00

DNA Core Sample DNA123456ZA Page 44 of 62

Caffeine sensitivity: Performance

Moderate doses of caffeine intake have been reported to improve both sprint and endurance performance. In terms of athletic performance and benefits, how you respond to caffeine is dependent on whether you are a fast or slow caffeine metaboliser and on your habitual caffeine intake.



drink decaffeinated coffee instead.

GENE VARIATION	GENE RESULT	GENE IMPACT
CYP1A2 A>C	CA	00

Caffeine sensitivity: Heart health

Caffeine intake can cause spikes in blood pressure and can increase risk of heart disease depending on whether you are a fast or slow metaboliser of caffeine.

Lim it coffee intake to less than 3 cups per day, or drink decaffeinated coffee instead.

GENE VARIATION	GENE RESULT	GENE IMPACT
CYP1A2 A>C	CA	00



DNA Core Sample DNA123456ZA Page 45 of 62

Salt sensitivity

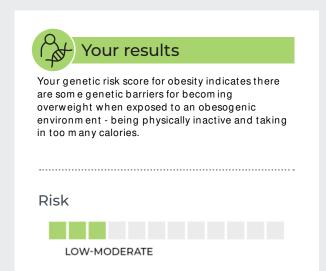
Salt sensitivity is a measure of how one's blood pressure responds to salt intake. Certain genetic variations can predispose individuals to salt sensitivity. If you are salt-sensitive, then you are at a higher risk of having spikes in your blood pressure when you consume foods high in salt. This is especially harmful if you already suffer from high blood pressure (hypertension), as high blood pressure is a major risk factor for heart disease and stroke.

GENE VARIATION	GENE RESULT	GENE IMPACT
ACE I>D	ID	
AGT T>C	TC	00

Significantly reducing your salt intake will be beneficial to your health if you suffer from hypertension.

SALT CONTENT	Portion	mg
Instant noodle	1 pack	1000-1200
Chicken broth	240ml	782
Canned soup	1 can	700
Tomato ketchup	½ cup	321
Salted fish	100g	200

DNA Core Sample DNA123456ZA Page 46 of 62


Weight management

Weight and body composition management

Risk for obesity

Obesity risk refers to the contribution of your genotype predisposing you to becoming overweight/obese and provides insight to responsiveness to a weight management programme.

It is important that you maintain a healthy diet and lifestyle for overall wellbeing and to avoid any risk of becoming overweight.

GENE VARIATION	GENE RESULT	GENE IMPACT
ADIPOQ -11391 G>A	GG	00
ADRB2 Arg16Gly A>G	AA	0
APOA2 -256 T>C	СТ	
APOA5 -1131 T>C	TC	
FABP2 Ala54Thr G>A	GA	00
PPARG Pro12Ala C>G	CC	0
PLIN 11482 G>A	GA	00
UCP1 -3826 A>G	AA	0
UCP2 -866 G>A	AA	Ø
UCP3 55 C>T	CC	0

GENE VARIATION	GENE RESULT	GENE IMPACT
ADRB2 Gln27Glu C>G	CC	0
DRD2 C>T	CC	0
SLC2A2 Thr110Ile C>T	CC	0
TAS1R2 Ile191Val G>A	AA	000
FTO T>A	AT	00
MC4R V103I T>C	π	0
TCF7L2 C>T	СТ	00
ADRB3 Trp64Arg T>C	TC	00
CLOCK 3111 T>C	π	0
TNFA -308 G>A	GG	0

DNA Core Sample DNA123456ZA Page 47 of 62

Circadian rhythm influence on weight and exercise performance

CLOCK is an essential element of the human biological clock and is involved in metabolic regulation. Your biological clock can influence the time of day you are likely to achieve your best performance.

Your day-night cycle (i.e. when you are awake and when you go to sleep and how well you sleep) plays a major role in regulating hormone levels such as insulin and cortisol, appetite control, weight management and overall health. Your genes plus your environment determine your unique circadian rhythm.

Your results

Your TT genotype suggests that you are more likely to be a morning person - you may prefer waking up early and getting to bed early. You may enjoy exercising earlier in the day.

Preference

GENE VARIATION	GENE RESULT
CLOCK 3111 T>C	π

Establish a morning exercise routine.

DNA Core Sample DNA123456ZA Page 48 of 62

Bitter taste

Taste is an important determinant of food acceptance or rejection behaviour. Interindividual variability in bitter taste sensitivity can strongly influence food preferences, nutritional status, and health.

Your results

This combination of genotypes for the TAS2R38 gene results in a 'medium-taster' phenotype, meaning individuals are able to taste the bitter compounds in food. Medium tasters have been associated with having a decreased intake of vegetables, especially dark green leafy vegetables, and a preference for sweet foods. There has also been a link with medium tasters and an increased risk for having a higher BMI, and possibly colon cancer. Increase awareness of this preference, and encourage vegetable intake. More palatable vegetable options with the use of other ingredients may improve compliance.

••••••

GENE VARIATION	GENE RESULT	GENE IMPACT
TAS2R38 Pro49Ala	M 13	
TAS2R38 Ala262Va	Medium Taster	00
TAS2R38Val296Ile		

Outcomes

Choose young vegetables, earlier in the season that are less bitter. Prepare vegetables with herbs and spices to make them more palatable.

DNA Core Sample DNA123456ZA Page 49 of 62

Sweet tooth

Having a "sweet tooth" can be described as craving, or seeking out, sweet foods. This has been linked to an increased risk for being overweight/obese.

GENE VARIATION	GENE RESULT	GENE IMPACT
TAS1R2 Ile191Val G>A	AA	000
SLC2A2 Thr110Ile C>T	CC	0

It is important to try to completely avoid all highsugar foods such as sweets, pastries, cakes and sweetened beverages. It would also be prudent to avoid artificially sweetened foods and drink to help sensitise your 'sweet' taste buds.

DNA Core Sample DNA123456ZA Page 50 of 62

Snacking and satiety

Satiety can be described as the feeling of fullness after a meal. Some individuals have an increased tendency to snack more often and to experience reduced feelings of satiety

GENE VARIATION	GENE RESULT	GENE IMPACT
TCF7L2 C>T	CT	00
MC4R V103I T>C	TT	0
FTO T>A	AT	00

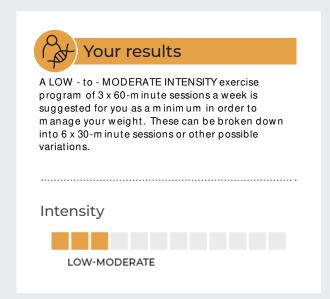
Outcomes

Try not to skip meals, opt for healthy snacks such as vegetables and fibre-rich foods, and make use of mindful eating techniques (sit at a table for all meals, eat only what is plated, don't eat on-the-run or in front of the TV, don't snack directly from the cupboard or fridge).

Food sources

Healthy snacking

REPLACE	WITH
Ice cream with toppings	Low fat yoghurt with berries
Pizza slice	Sandwich with animal protein and vegetables
Pasta salad	Fresh vegetables with low fat dip
Nachos and cheese dip	Whole wheat crackers
Potato crisps	Popcorn original


DNA Core Sample DNA123456ZA Page 51 of 82

Exercise response

Exercise requirements for weight loss

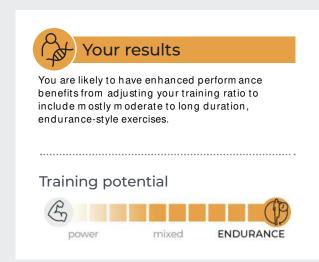
Many people believe that if they are doing some sort of exercise and eating healthy, they will lose weight. In theory this is correct, but our genes tell a bit of a different story. Surprisingly, the amount and intensity of exercise you do, can play a key role in whether your weight loss journey will be successful.

GENE VARIATION	GENE RESULT	GENE IMPACT
ADRB2 Arg16Gly A>G	AA	\circ
ADRB2 Gln27Glu C>G	CC	0
ADRB3 Trp64Arg T>C	TC	00
FTO T>A	AT	00
PPARG Pro12Ala C>G	CC	0

Outcomes

You require slightly higher amounts of physical activity to help achieve and maintain weight loss. Try to aim for a minimum of 20 MET Hours per week.

One of the most important elements is the intensity of your workout. But how do you know if you're working at a low - moderate intensity level? There's no precise definition, but there are ways to monitor how hard you're working: for example, if you are working at a low - moderate intensity level, you should be breathing heavily but still able to hold short conversations with someone else. You should still feel som ewhat comfortable, becoming noticeably more challenged though. The energy expenditure will be different for every single person as it depends on a multitude of factors such as age, gender, body composition, and current level of fitness. Something that might seem very easy for you, may be much more difficult for som eone else.


DNA Core Sample DNA123456ZA Page 52 of 82

Endurance and power potential

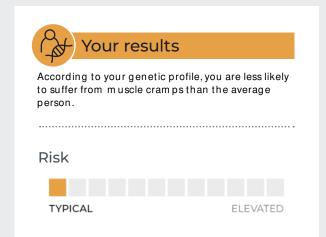
Some people respond better to specific exercises than others. This is because our unique genetic profile can affect physiological processes that impact the amount of benefit we each get from power or endurance training. Power uses strength to overcome resistance, while endurance refers to sustained effort with no reduction in performance. Power or anaerobic exercise are generally short in length with high intensity. Power exercise breaks down glucose for energy without using oxygen i.e. a lot of energy is released within a small period and your oxygen demand surpasses the oxygen supply. Power sports such as Olympic lifting, long jump and shotput, require a huge amount of explosive force.

Endurance training or aerobic exercise (also known as "cardio") requires pumping of oxygenated blood by the heart to deliver oxygen to working muscle. It stimulates the heart rate and breathing rate to increase in a way that can be sustained for the entire exercise session. Examples include cardio machines, cycling, running, swimming, walking, hiking, aerobics classes, dancing, cross country skiing and kickboxing. Consider your genetic results in the context of your current health and performance goals and tailor your exercise plan appropriately, keeping in mind the importance of sport-specific training.

GENE	GENE IMPACT		
RESULT	power	endurance	
TC	0		
ID	00	00	
π		000	
GG	0	0	
AA		0	
GA		0	
GG		000	
AA		000	
CC		000	
CC	0		
XX		00	
TC	0		
	TC ID TT GG AA GA GG AA CC CC XX	RESULT power TC O ID OO TT GG O AA GA GG AA CC CC XX	

Outcomes

Focus your efforts on the low to medium-intensity sessions at about 50-70% of your max heart rate but you are able to still maintain a conversation (Zones 1-3 of the Cardio Zone Training Table). It is important to include some strength and conditioning training in your program, even if you are training for endurance performance. With weight training, focus on low-intensity resistance training. This involves doing multiple repeats with relatively light weights. This helps improve muscle contraction efficiency; circuit training fits this profile well. Plyometrics can also be used to train for greater power output.



DNA Core Sample DNA123456ZA Page 53 of 62

Muscle cramping susceptibility

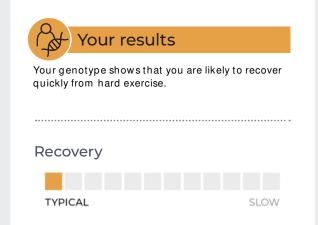
Muscle cramps are sudden, involuntary contractions that occur in various muscles. A sudden, sharp pain, lasting from a few seconds to 15 minutes, is the most common symptom of a muscle cramp. In some cases, a bulging lump of muscle tissue beneath the skin can accompany a cramp. Muscle cramps have several causes. Some cramps result from overuse of your muscles during exercise. Muscle injuries, poor circulation and dehydration can also trigger cramps. Low levels of any of the following minerals that contribute to healthy muscle function may also cause muscle cramps: calcium, potassium, sodium, or magnesium.

DNA Core Sample DNA123456ZA Page 54 of 62


Recovery from exercise

There are limits to how much stress the body can tolerate before it breaks down and risks injury. Doing too much work, too quickly will result in injury or muscle damage, but doing too little, too slowly will not result in any improvement. Building recovery time into any training program is important to let the body adapt to the stress of exercise. Recovery also allows the body to replenish energy stores and repair damaged tissues. When you go for a run, lift weights, or play football, any discomfort tells the body that it needs to be better equipped to deal with the situation. The response: it becomes stronger, bigger, or more efficient – this is called supercompensation and it is why we exercise.

Proper training: supercompensation

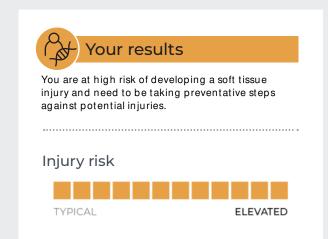

Incorrect training

This process is natural and normal, but it is easy to disrupt it with too much exercise. The ability to sustain many intense training sessions comes from a mixture of good genetics and slowly building a training foundation over the course of many years. If you have already been training at a high level for some years, take this as an indication that your body can theoretically handle high loads of exercise under ideal conditions. Otherwise, it is suggested that you build up to this level slowly.

DNA Core Sample DNA123456ZA Page 55 of 62

GENE VARIATION	GENE RESULT	GENE IMPACT
IL-6 -174 G>C	CG	00
IL-6R A>C	AA	0
CRP G>A	AA	0
TNFA -308 G>A	GG	0
MnSOD/SOD2 47 T>C (Val16Ala)	TC	00
eNOS 894 G>T	GT	00

This means that you should have the capacity to undertake a heavy training load with frequent inputs of exercise. Always allow one full day off per week. Sleep is vitally important for recovery and you should try to obtain enough sleep so that you feel refreshed upon rising in the morning; this might be +/- 8 hours at night. Managing your nutrition is also important for optimal recovery. Because inflam mation and oxidative stress influence recovery rates, you should look to consume mostly anti-inflam matory and anti-oxidant foods in your diet and avoid those that are pro-inflam matory.



DNA Core Sample DNA123456ZA Page 56 of 62

Risk for soft tissue injuries

To optimize performance in sport, athletes must maximize the stiffness of the musculoskeletal system. This stiffness is directly related to the individual's movement economy. In other words, the greater the musculoskeletal stiffness, the better the performance. However, when the tendon is stiffer than the muscle is strong, the protective effect of the tendon is lost and the chance of an injury increases. Genes involved in the structural integrity and remodelling of soft tissues such as tendons and ligaments can be implicated in the risk of injury. These soft tissues are made up predominantly of collagen which has many important functions in the body, including providing your skin with structure and strengthening your bones. Collagen also helps maintain the integrity of your cartilage, which is the rubber-like tissue that protects your joints.

GENE VARIATION	GENE RESULT	GENE IMPACT
COL1A1 1546 G>T	GG	000
GDF5 C>T	TT	000
COL5A1 C>T		0

Resistance, weight, and flexibility training can assist with injury prevention and rehabilitation if an injury does occur. Ensure adequate intake of vitamin C, iron, and protein as these are necessary for collagen turnover. Consuming bone broth or supplementing with hydrolyzed collagen will also help.

DNA Core Sample DNA123456ZA Page 57 of 62

Appendix

Factsheets

- Diet type for weight management
- Exercise and MET hours for weight management
- Improving sports performance

DNA Core DNA1234567A Page 58 of 62 Sample

Diet type for weight management Mediterranean Diet

The Mediterranean food patterns are typical of Crete, Greece and Southern Italy in the early 1960's. The term is closely tied to traditional areas of olive cultivation in the Mediterranean region more than 30 years ago, and not to the urbanised diet eaten in these countries today. Several studies have established the health benefits of the Mediterranean Diet in reducing the risk of metabolic syndrome, type 2 diabetes, cardiovascular disease, and some neuro-degenerative diseases and cancers. In addition, it has been shown to be an extremely effective eating plan for weight loss.

STARCH

rice, couscous

Corn, peas,

sweet

potato,

butternut

and pumpkin

SUGAR

Honey, white

and

brown

sugar.

FRUIT

Apples, pears,

berries.

melon,

peaches

Yoahurt. milk

WHAT IS A FAT?

POLYUNSATURATED FAT

O OMEGA 3 OMEGA 6 Oily fish, Sunflower oil, flaxseed oil sesame seeds

Full cream dairy, butter and lard,

fat on meat, chicken skin

FAT

Deep fried foods, commercially baked goods

FAT

FOOD GUIDE PYRAMID

Meat and sweets: less often

Poultry and eggs: moderate portions every 2 days or weekly Cheese and yoghurt: moderate portion daily to weekly

THE DIET IS BEST **DESCRIBED AS:**

- Rich in plant foods (whole-grain cereals, fruits, vegetables, legumes, tree nuts, seeds and olives).
- Extra virgin olive oil is the principle source of added fat.
- High to moderate intakes of fish and seafood
- Moderate consumption of eggs, poultry and low fat dairy products (mainly cheese and yoghurt).
- · Low consumption of red meat.
- Moderate intake of alcohol (mainly wine during meals).
- In addition, all foods in this plan should be as fresh as possible, minimally processed, and local and seasonal foodstuff should be used.

DNA Core Sample DNA123456ZA Page 59 of 62

Below you will find a detailed explanation of exactly what MET HOURS are, and a guide to plan your exercise week to meet your recommended MET HOURS. Remember to consult your healthcare practitioner before embarking on a new exercise programme, and to stop exercising if you feel nauseous or short of breath.

What is a MET?

MET stands for Metabolic Equivalent Task. METs are a way to measure how much energy you burn up during any chosen physical activity. Every activity, from watching TV to going for a run, has a MET value. The more vigorous the activity, the higher the MET value.

What are MET HOURS?

Whereas METs are a way to measure the intensity of a particular activity, MET HOURS allow you to calculate how many hours of your chosen activities you need to do in a week.

Three easy steps to calculating your weekly MET HOURS score

Refer to your exercise requirements, and to the table of activities divided into light, moderate and vigorous intensity on page 17.

- Match your activity of choice to the exercise description to determine whether you are reaching your recommended amount of physical activity in MET HOURS. Try to balance high intensity sessions with light to moderate exercises to assist with recovery and decrease risk of injury and 'burning out'.
- 2 Use this equation to calculate the MET HOURS for each activity:

MET VALUE x DURATION = MET HOURS SCORE (in hours)

For example, if you play singles tennis for 1 hour and 40 minutes (1.60 hours): $8 \text{ METS} \times 1.60 = 13 \text{ MET HOURS}$

To calculate your weekly MET HOURS SCORE:

Add the MET HOURS SCORE of each workout for that week

For example, if you played singles tennis for 1 hour and 40 minutes, ran for 30 minutes at a pace of 8 km/hour (8 x 0.5 = 4) and played 2 hours of golf ($4.5 \times 2 = 9$), then your weekly MET HOURS SCORE will be 26 (13 + 4 + 9)

DNA Core Sample DNA123456ZA Page 60 of 62

Table of activities:

Exercise intensity for 1 hour of exercise:

derense intensity for inflodi of exercise

LESS THAN 5 METS

LIGHT

MODERATE

5-9 METS

HIGH

9 METS AND ABOVE

EXERCISE DESCRIPTION	METS
Walking, 3.2km/hr, firm, flat ground	2.5
Cycling, less than 16km/ hr, for leisure	3.4
Walking, 5.6km/hr, brisk pace, firm surface	3.8
Rowing, stationary, 50 watts, light effort	4
Tai Chi	4
Water aerobics	4
Golf	4.5

EXERCISE DESCRIPTION	METS
Cycling, stationary, 100 watts, light effort	5.5
Boxing, punching bag	6
Walking, 5.6km/hr, uphill	6
Cycling, stationary, 150 watts	7
Aerobics, high impact	7
Swimming, freestyle, moderate	7
Circuit training	8
Running, 8km/hr	8
Tennis, singles	8
Mountain biking	8.5
Stationary rowing, 150 watts	8.5

EXERCISE DESCRIPTION	METS
Stairmaster	9
Cycling, 22-26km/hr, vigorous	10
Running, 9.6km/hr	10
Swimming, treading water, fast	10
Stationary rowing, 200 watts, very vigorous	12
Rope jumping, fast	12
Squash	12

Talking during exercise is a reliable way to measure your exercise intensity:

- If you can talk without puffing at all, you're not pushing too hard and it's very likely a **light intensity** activity.
- \cdot If you can talk but not sing, you're exercising at a $\boldsymbol{moderate}$ intensity.
- \cdot If you can't talk without gasping, then you are exercising at a **high intensity**.

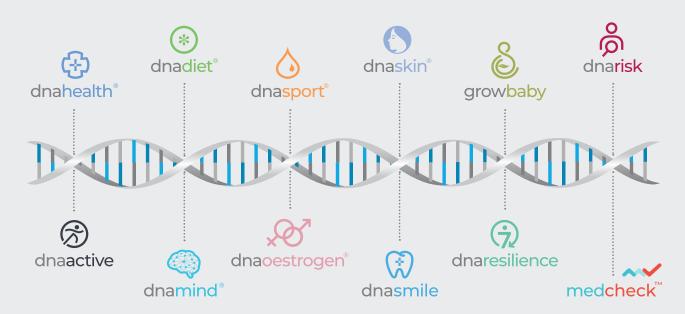
DNA Core Sample DNA123456ZA Page 61 of 62

Improving sports performance

Cardio zone training table

If you are training with a heart rate monitor, use it to stay within range of the suggested heart rate percentages.

Calculating your target heart rate:


If you are not training with a heart rate monitor, choose which zone you think you are in by assessing how you feel during the workout. Does it seem quite light and can you keep a conversation going? Or are you gasping for air throughout the entire session?

ZONE	HEART RATE (target heart rate)	EFFORT / FEEL	BENEFITS
1	- ∕∕∕≎ <mark>95 - 114</mark> (50 - 60%)	Very light	Improved overall health: body fat decreases, blood pressure and cholesterol are lowered, muscle mass increase, and helps recovery.
2	114 - 133 -(60 - 70%)	Light	Improved basic endurance: gain muscle and lose fat mass, strengthen heart muscle, fat utilization zone.
3	133 - 152 - ∕ ∕∕ ♡ (70 - 80%)	Moderate	Improved aerobic fitness: increase in the number and size of blood vessels, increased lung capacity and respiratory rate, as well as an increase in size and strength of the heart muscle.
4	152 – 171 - ∕ ∕ ♡ (80 - 90%)	Hard	Increased maximum performance capacity: high total calories burned during exercise. Large amount of carbohydrates used for energy production. Improved lung capacity and higher tolerance for more strenuous exercises.
5	171 − 190 - ~~ (90 - 100%)	Very hard	Develops maximum performance and speed: Highest total calories burned, but lowest percentage of fat calories. Spending too much time in this zone, even for elite athletes can be painful, cause injuries and lead to over training.

A lifetime of optimal health awaits you

Your genes do not change, which means our laboratories will only ever need one sample* from you. Throughout your life, as your health goals and priorities change, we can continue to provide valuable health insights from this single sample* to support your unique health journey.

*Requires finger prick blood spot sample collection

Our Commitment

DNAlysis Biotechnology is continuously developing new tests with the highest standards of scientific rigour. Our commitment to ensuring the ethical and appropriate use of genetic tests in practice means that gene variants are only included in panels once there is sound motivation for their clinical utility and their impact on health outcomes.

ADVANCED | ACTIONABLE | APPROPRIATE use in practice

From the laboratories of:

Distributed by:

info@dnalife.healthcare | www.dnalife.healthcare

For more information:

011 268 0268 | admin@dnalysis.co.za | www.dnalysis.co.za

Michelé Delport - Medical Scientist Danny Meyersfeld (PhD) - Laboratory Director

Denmark Office: Nygade 6, 3.sal · 1164 Copenhagen K · Denmark | **T:** +45 33 75 10 00 South Africa Office: North Block · Thrupps Centre · 204 Oxford Rd · Illovo 2196 · South Africa | T: +27 (0) 11 268 0268 UK Office: 11 Old Factory Buildings · Battenhurst Road · Stonegate · E. Sussex · TN5 7DU · UK | T: +44 (0) 1580 201 687

Risks and Limitations:

DNAlysis Biotechnology has a laboratory with standard and effective procedures in place for handling samples and effective protocols in place to protect against technical and operational problems. However as with all laboratories, laboratory error can occur; examples include, but are not limited to, sample or DNA mislabelling or contamination, failure to obtain an interpretable report, or other operational laboratory errors. Occasionally due to circumstances beyond DNAlysis Biotechnology's control it may not be possible to obtain SNP specific results.